Hidup Seperti Semilir Angin, Menyejukkan Meski Hanya Sesaat

Friday, January 6, 2012

METABOLISME SEKUNDER


A. PENGERTIAN
Metabolit sekunder adalah senyawa metabolit yang tidak esensial bagi pertumbuhan organisme dan ditemukan dalam bentuk yang unik atau berbeda-beda antara spesies yang satu dan lainnya. Setiap organisme biasanya menghasilkan senyawa metabolit sekunder yang berbeda-beda, bahkan mungkin satu jenis senyawa metabolit sekunder hanya ditemukan pada satu spesies dalam suatu kingdom. Senyawa ini juga tidak selalu dihasilkan, tetapi hanya pada saat dibutuhkan saja atau pada fase-fase tertentu. Fungsi metabolit sekunder adalah untuk mempertahankan diri dari kondisi lingkungan yang kurang menguntungkan, misalnya untuk mengatasi hama dan penyakit, menarik polinator, dan sebagai molekul sinyal. Singkatnya, metabolit sekunder digunakan organisme untuk berinteraksi dengan lingkungannya.

B. MANFAAT
Sebagian besar tanaman penghasil senyawa metabolit sekunder memanfaatkan senyawa tersebut untuk mempertahankan diri dan berkompetisi dengan makhluk hidup lain di sekitarnya. Tanaman dapat menghasilkan metabolit sekunder (seperti: quinon, flavonoid, tanin, dll.) yang membuat tanaman lain tidak dapat tumbuh di sekitarnya. Hal ini disebut sebagai alelopati. Berbagai senyawa metabolit sekunder telah digunakan sebagai obat atau model untuk membuat obat baru, contohnya adalah aspirin yang dibuat berdasarkan asam salisilat yang secara alami terdapat pada tumbuhan tertentu. Manfaat lain dari metabolit sekunder adalah sebagai pestisida dan insektisida, contohnya adalah rotenon dan rotenoid. Beberapa metabolit sekunder lainnya yang telah digunakan dalam memproduksi sabun, parfum, minyak herbal, pewarna, permen karet, dan plastik alami adalah resin, antosianin, tanin, saponin, dan minyak volatil.
C. SENYAWA METABOLIT SEKUNDER
1. Alkaloid
Definisi
Alkaloid merupakan senyawa yang mengandung atom nitrogen yang tersebar secara terbatas pada tumbuhan. Alkaloid kebanyakan ditemukan pada Angiospermae dan jarang pada Gymnospermae dan Cryptogamae. Senyawa ini cukup banyak jenisnya dan terkadang memiliki struktur kimia yang sangat berbeda satu sama lain, meskipun berada dalam satu kelompok.

Klasifikasi
Pengelompokan alkaloid biasanya didasarkan pada prekursor pembentuknya. Kebanyakan dibentuk dari asam amino seperti lisin, tirosin, triptofan, histidin dan ornitin. Sebagai contoh, nikotin dibentuk dari ornitin dan asam nikotinat. Beberapa kelompok alkaloid disajikan dalam tulisan ini. Diantaranya adalah kelompok alkaloid benzil isoquinon, seperti: papaverin, berberin, tubokurarin dan morfin. Jenis alkaloid yang banyak terdapat pada famili Solanaceae, tergolong ke dalam kelompok alkaloid tropan, seperti: atropin, yang ditemukan pada Atropa belladona dan skopolamin. Kokain yang berasal dari tumbuhan koka, Erythroxylon coca, juga termasuk ke dalam kelompok ini, meskipun koka tidak termasuk anggota famili Solanaceae. Alkaloid dengan struktur inti berupa indol, dikelompokkan sebagai alkaloid indol, seperti: strikhnin dan quinin yang berasa pahit dan merupakan senyawa penolak makan bagi serangga. Kelompok alkaloid pirrolizidin merupakan ester alkaloid pada genus Senecio, seperti: senecionin. Kelompok lain dari alkaloid yang berasal asam amino lisin adalahquinolizidin yang sering disebut sebagai alkaloid lupin karena banyak terdapat pada genus Lupinus. Alkaloid polihidroksi memiliki stereokimia yang mirip dengan gula, sehingga mengganggu kerja enzim glukosidase. Kelompok alkaloid polihidroksi merupakan penolak makan bagi serangga. Beberapa jenis alkaloid merupakan derivat dari asam nikotinat, purin, asam antranilat, poliasetat dan terpenes. Mereka dikelompokkan ke dalam alkaloid purin, seperti: kafein.

2. Terpenoid
Definisi Terpenoid merupakan kelompok metabolit sekunder terbesar. Saat ini hampir dua puluh ribu jenis terpenoid telah teridentifikasi. Kelompok ini merupakan derivat dari asam mevalonat atau prekursor lain yang serupa dan memiliki keragaman struktur yang sangat banyak. Struktur terpenoid merupakan satu unit isopren (C5H8) atau gabungan lebih dari satu unit isopren, sehingga pengelompokannya didasarkan pada jumlah unit isopren penyusunnya.

Klasifikasi
Monoterpenoid umumnya bersifat volatil dan biasanya merupakan penyusun minyak atsiri. Monoterpenoid memberikan aroma yang khas pada tumbuhan. Monoterpenoid dikelompokkan sebagai a). asiklik, contoh: geraniol, b). monosiklik, contoh: limonene dan c). bisiklik, contoh: pinene. Untuk mencegah terjadinya keracunan diri (autotoxicity), tumbuhan membentuk tempat penyimpanan khusus. Kelompok terbesar dari terpenoid adalah sesquiterpen yang juga merupakan penyusun minyak atsiri. Contoh yang cukup dikenal dari kelompok ini adalah poligodial dan warburganal yang merupakan zat penolak makan berbagai jenis serangga. Diterpenoid, seperti asam resin (misalnya: asam abietat) dari tumbuhan keluarga pinus-pinusan dan klerodan (misalnya: ajugarin dari tumbuhan Ajuga remota) merupakan zat penolak makan bagi serangga. Triterpenoid merupakan senyawa metabolit sekunder yang tersebar luas dan beragam. Perwujudan dari senyawa ini dapat berupa resin, kutin maupun semacam gabus. Termasuk ke dalam kelompok ini adalah limonoid (misalnya: azadirachtin), lantaden, dan cucurbitacin (misalnya: cucurbitacin B). Azadirachtin terkenal sebagai zat penolak makan yang sangat kuat bagi serangga. Demikian juga dengan cucurbitacin.

3. Fenolik
Definisi
Fenolik merupakan senyawa yang banyak ditemukan pada tumbuhan. Fenolik memiliki cincin aromatik dengan satu atau lebih gugus hidroksi (OH-) dan gugus-gugus lain penyertanya. Senyawa ini diberi nama berdasarkan nama senyawa induknya, fenol. Senyawa fenol kebanyakan memiliki gugus hidroksi lebih dari satu sehingga disebut sebagai polifenol. Fenol biasanya dikelompokkan berdasarkan jumlah atom karbon pada kerangka penyusunnya.
Kelompok terbesar dari senyawa fenolik adalah flavonoid, yang merupakan senyawa yang secara umum dapat ditemukan pada semua jenis tumbuhan. Biasanya, satu jenis tumbuhan mengandung beberapa macam flavonoid dan hampir setiap jenis tumbuhan memiliki profil flavonoid yang khas. Kerangka penyusun flavonoid adalah C6–C3–C6. Inti flavonoid biasanya berikatan dengan gugusan gula sehingga membentuk glikosida yang larut dalam air. Pada tumbuhan, flavonoid biasanya disimpan dalam vakuola sel. Secara umum, flavonoid dikelompokkan lagi menjadi kelompok yang lebih kecil (sub kelompok), yaitu:
(1) flavon, contoh: luteolin,
(2) flavanon, contoh: naringenin,
(3) flavonol, contoh: kaempferol,
(4) antosianin dan
(5) calkon.
Beberapa jenis flavon, flavanon dan flavonol menyerap cahaya tampak, sehingga membuat bunga dan bagian tumbuhan yang lain berwarna kuning atau krem terang. Sedangkan jenis-jenis yang tidak berwarna merupakan zat penolak makan bagi serangga (contoh: katecin) ataupun merupakan racun (contoh: rotenon). Rutin, yang merupakan glikosida flavonol yang tersebar di hampir semua jenis tumbuhan, juga merupakan zat penolak makan yang kuat bagi serangga polifagus, seperti Schistocerca americana. Sementara itu paseolin, dilaporkan merupakan glikosida flavonol yang paling efektifsebagai zat penolak makan bagi serangga. Pada percobaan dengan kumbang pemakan akar, Costelytra zealandica, paseolin memberikan nilai FD50 yang sangat rendah, yaitu 0.03 ppm.
Tanin merupakan senyawa polifenol dengan berat molekul antara 500 sampai dengan 20000 dalton. Pada sel tumbuhan, tanin selalu berikatan dengan protein sehingga disebut merupakan zat yang menurunkan nilai nutrisi dari jaringan tumbuhan bagi pemakannya

4. Glukosinolat dan sianogenik
Glukosinolat
Glukosinolat merupakan metabolit sekunder yang dibentuk dari beberapa asam amino dan terdapat secara umum pada Cruciferae (Brassicaceae). Glukosinolat dikelompokkan menjadi setidaknya 3 kelompok, yakni: (1). glukosinolat alifatik (contoh: sinigrin), terbentuk dari asam amino alifatik (biasanya metionin), (2) glukosinolat aromatik (contoh: sinalbin), terbentuk dari asam amino aromatik (fenilalanin atau tirosin) dan (3) glukosinolat indol, yang terbentuk dari asam amino indol (triptofan). Keragaman jenis glukosinolat tergantung pada modifikasi ikatannya dengan gugus lain melalui hidroksilasi, metilasi dan desaturasi. Hidrolilis dari glukosinolat terjadi karena adanya enzim mirosinase, sehingga menghasilkan beberapa senyawa beracun seperti isotiosianat, tiosianat, nitril, dan epitionitril. Senyawa-senyawa tersebut merupakan racun bagi serangga yang bukan spesialis pemakan tumbuhan Cruciferae, dan merupakan zat penolak makan bagi ulat kilan, Trichoplusia ni.
Sianogenik
Semua jenis tumbuhan mempunyai kemampuan untuk mensintesis glikosida sianogenik. Namun, tidak semua jenis tumbuhan mengumpulkan senyawa ini dalam sel-selnya. Pada famili Rosaceae, senyawa ini disimpan pada vakuola. Pada saat sel tumbuhan dirusak, glikosida sianogenik akan dihidrolisis secara enzimatis menghasilkan asam sianida
(HCN) yang sangat beracun dan merupakan zat penolak makan serangga dengan spektrum yang luas.

D. JALUR METABOLISME
1. JaIur asam asetat
Poliketida meliputi golongan yang besar bahan alami yang digolongkan bersarna berdasarkan pada biosintesisnya. Keanekaragaman struktur dapat dijelaskan sebagai turunan rantai poli-ß-keto, terbentuk oleh koupling unit-unit asam asetat (C2) via reaksi kondensasi, misalnya
n CH3CO2H [CH3C0]n –
Termasuk poliketida adalah asam temak, poliasetilena, prostaglandin, antibiotika makrolida, dan senyawa aromatik seperti antrakinon dan tetrasiklina. Pembentukan rantai poli-ß-keto dapat digambarkan sebagai sederet reaksi Claisen, keragaman melibatkan urutan ß-oksidasi dalam metabolisme asam lemak. Jadi, 2 molekul asetil-KoA dapat ikut serta datam reaksi Claisen membentuk asetoasetil-KoA, kemudian reaksi dapat berlanjut sampai dihasilkan rantai poli-ß-keto yang cukup (Gambar 3—7). Akan tetapi studi tentang enzim yang terlibat dalam biosintesis asam Iemak belum terungkap secara rinci. Namun demikian, dalam pembentukan asam lemak melibatkan enzim asam Iemak sintase seperti yang dibahas di atas.

2. Jalur asam sikimat
Jalur asam sikimat merupakan jafur alternatif menuju senyawa aromatik, utamanya L-fenilalanin. L-tirosina. dan L-triptofan. Jalur ini berlangsung dalam mikroorganisme dan tumbuhan, tetapi tidak berlangsung dalam hewan, sehingga asam amino aromatik merupakan asam amino esensial yang harus terdapat dalam diet manusia maupun hewan. Zantara pusat adalah asam sikimat, suatu asam yang ditemukan dalam tanaman IlIicium sp. beberapa tahun sebelum perannya dalam metabolisme ditemukan. Asam ini juga terbentuk dalam mutan tertentu dari Escherichia coli. Adapun contoh reaksi yang terjadi dalam biosintesis asam polifenolat tercantum dalam Gambar 3 — 7. Dalam biosintesis L-triptofan dan asam 4-hidroksibenzoat juga terjadi zantara asam korismat.

3. Jalur asam mevalonat
Terpenoid merupakan bentuk senyawa dengan keragaman struktur yang besar dalam produk alami yang diturunkan dan unit isoprena (C5) yang bergandengan dalam model kepala ke ekor (head-to-tail), sedangkan unit isoprena diturunkan dari metabolisme asam asetat oleh jalur asam mevalonat (mevalonic acid : MVA). Adapun reaksinya adalah sebagai berikut.
Share:

6 comments:

Menulis adalah salah satu cara untuk mengubah, menyimpan dan menyampaikan

Q n A

Mau diskusi dan bertanya soal Biologi? Silahkan kirim email ke kazebara20@gmail.com
See me on Instagram @wardhaayu