Tuesday, December 25, 2012

DITERPENOID



 Pengertian
Senyawa diterpenoid adalah senyawa C20 yang bila diamati secara seksama,dapat terlihat bahwa tersususn dari empat unit isoperana C5 (2-metil-1,3-butadiena) yang terikat satu sama lain dalam pola kepala-ekor secara simetris. Konfigurasi ini,yang dalam alam akan membentuk dasar dari aturan biogenetik isoperana, mengantarkan pada pendapat bahwa diterpenoid asiklik geranil-geraniol adalah dalam bentuk pirofosfatnya,merupakan prazat dari sejumlah diterpenoid yang kompleks. Tetapi baru sekarang, geranil-geraniol ditemukan dalam alam dan konversi biologiknya menjadi diterpenoid yang kompleks diteliti dengan studi biogenetik ini dan catatan dari struktur dari sejumlah diterpenoid.
Sejumlah besar diterpenoid berasal dari siklisasi terinduksi proton dari all-trans –geranilgeraniol pirofosfat yang terlipat menjadi konformasi all chair, siklisasi ini dimulai dengan suatu pola trans-anti-trans dan sterokimiawi rantai samping sis. Modifikasi selanjutnya dari kation ini menghasilkan produk yang berupa sedikitnya 30 kerangka diterpenoid(Scheur, 1978)
Sebaliknya, hanya dua golongan dari diterpenoid lautan, yaitu golongan bromolabdana dan turunan asam isoagatat yang berasal dari lautan yang dapat dirasionalisasikan sebagai produkdari skema biogenetik umum yang sama, diterpenoid lautan adalah modifikasi asiklik atau turunannya, misalnya sebagai hasil katabolik atau sistem siklik yang lebih kompleks yang dihasilkan oleh mekanisme dari siklisasi yang sebelumnya tidak pernah dijumpai dalam alam.Besarnya kemungkinan ditemukannya kerangka diterpen yang baru serta adanya potensi untuk ditemukannya senyawa biologis aktif menyebabakan penelitian tentang diterpenoid menjadi suatu bidang yang menarik.
Dalam penelitian ini dasar penelitian adalah melalui sifatnya yang makin kompleks dimulai dari contoh siklik, bisiklik dan monosiklik sampai pada sistem polisiklik yang lebih kompleks.Senyawa bromoditerpenoid dibuat terpisah dan dibicarakan secara tersendiri, karena biogenesisnya yang khas, bagian tentang produk katabolik dari diterpenoid dan yang mempunyai biogenetik campuran juga dimasukkan karena mereka memberikan tambahan pengetahuan tentang diterpenoid dalam metabolisme skunder.
Senyawa diterpeniod sampai saat ini masih dianggap sebagai komponen yang langka, asal usul senyawa ini terutama berasal dari gulma laut tropis dan coelentrata dari bangsa Alcyonaceae, dengan beberapa contoh yang disisolasi dari bunga karang, Penemuan-penemuan luar biasa dari sistem cincin yang tidak menurut aturan dan tidak diperkirakan akan menjadi dasar dari perkembangan yang berkesinambungan dalam bidang ini(Tim KBK, 2011)

 Manfaat Diterpenoid,
Menurut Gunawan (2008) dalam penelitiannya, manfaat diterpenoid diantaranya yaitu :
1.        Sebagai pengatur pertumbuhan (seskuiterpenoid absisin dan diterpenoid giberellin)
2.        Sebagai hormon pertumbuhan tanaman, podolakton inhibitor pertumbuhan tanaman, antifeedant serangga, inhibitor tumor, senyawa pemanis, anti fouling dan anti karsinogen (diterpenoid)
3.        Sebagai antibakteri pada herba meniran.

 Biosintesis Diterpenoid
Secara umum biosintesa dari terpenoid terjadi 3 reaksi dasar yaitu:
1.    Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat.
2.    Penggabungan kepala dan ekor dua unit isoprene akan membentuk mono-, seskui-, di-. sester-, dan poli-terpenoid.
3.    Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan triterpenoid dan steroid.
Mekanisme dari tahap-tahap reaksi biosintesis terpenoid adalah asam asetat setelah diaktifkan oleh koenzim A melakukan kondensasi jenis Claisen menghasilkan asam asetoasetat.
            Senyawa yang dihasilkan ini dengan asetil koenzim A melakukan kondensasi jenis aldol menghasilkan rantai karbon bercabang sebagaimana ditemukan pada asam mevalinat, reaksi-reaksi berikutnya adalah fosforialsi, eliminasi asam fosfat dan dekarboksilasimenghasilkan  isopentenil (IPP) yang selanjutnya berisomerisasi menjadi dimetil alil piropospat (DMAPP) oleh enzim isomeriasi. IPP sebagai unti isoprene aktif bergabung secara kepala ke ekor dengan DMAPP dan penggabungan ini merupakan langkah pertama dari polimerisasi isoprene untuk menghasilkan terpenoid.
            Penggabungan ini terjadi karena serangan electron dari ikatan rangkap IPP terhadap atom karbon dari DMAPP yang kekurangan electron diikuti oleh penyingkiran ion pirofosfat yang menghasilkan geranil.pirofosfat (GPP) yaitu senyawa antara bagi semua senyawa monoterpenoid.
            Penggabungan selanjutnya antara satu unti IPP dan GPP dengan menaisme yang sama menghasilkan Farnesil pirofosfat (FPP) yang merupakan senyawa antara bagi semua senyawa seskuiterpenoid. Senyawa diterpenoid diturunkan dari Geranil-Geranil Pirofosfat (GGPP) yang berasal dari kondensasi antara satu unti IPP dan GPP dengan mekanisme yang sama.


 Aktivitas Diterpenoid
     1. Antibacteria
            Menurut Gunawan (2008) unit diterpenoid aktiv pada herba meniran sebagai antibacteri.
            Ekstraksi senyawa terpenoid dilakukan dengan dua cara yaitu: melalui sokletasi dan maserasi
       Sekletasi
            Disokletasi pada serbuk kering yang akan diuji dengan 5L n-hexana. Ekstrak n-hexana dipekatkan, lalu disabunkan dalam 50 mL KOH 10%. Ekstrak n-heksana dikentalkan lalu diujifitokimia dan uji aktifitas bakteri.
      Teknik maserasi menggunakan pelarut methanol.
            Ekstrak methanol dipekatkan lalu lalu dihidriolisis dalam 100 mL HCl4M.hasil hidrolisis diekstraksi dengan 5 x 50 mL n-heksana. Ekstrak n-heksana dipekatkan lalu disabunkan dalam 10 mL KOH 10%. Ekstrak n-heksanadikentalkan lalu diuji fitokimia dan uji aktivitas bakterI
      Hasil uji aktivitas ekstrak n–heksanaa terhadap bakteri Escherichia coli ATCC® 25292 dan Staphylococcus aureus ATCC® 25293 menunjukkan fraksi n–heksanaa hasil sokletasi memberikan daya hambat yang lebih baik
Ekstrak n-heksana dimurnikan dengan sokletasi dan Kromatografi kolom dan gas , menunjukkan hasil sokletasi mengandung dua buah senyawa yaitu phytadiene ( termasuk dalam diterpenoid) dan senyawa 1,2-seco-cladiellan m/z 335 [M+- H].

2. Anticancer
       Menurut Pandi (2011) Ekstrak  Morinda citrifolia yang mengandung taxol, efektif digunakan sebagai antitumor/antikanker, utamanya pada kanker payudara. Penelitian ini membuktikan bahwa jamur endofit L. theobromae adalah calon yang sangat baik untuk alternatif sumber pasokan taxol. Konfirmasi dari kegiatan vitro dalam dari taxol terhadap baris sel kanker payudara manusia harus mendorong penelitian lebih lanjut.
      Ektraksi taxol dari Morinda citrifolia , disaring dengan kain katun tipis. Filtrat taxol ditambah 0,25g Na2CO3, kemudian maserat diekstraksi dengan pelarut dikloromethan 1:2.
      Penguapan pelarut dengan rotary evaporator. Residu padat dilarutakan kembali dengan methanol untuk pemisahan. Dianalisa dengan kromatografi dan spektroskopi.
      Efek sitotoksik taxol jamur diuji oleh MTT assay pada MCF-7 (lini sel kanker payudara manusia)
      Sel-sel yang digunakan dalam 96 mikro baik di konsentrasi 5 x 104 sel / ml dengan s Dulbecco dimodifikasi media yang mengandung 10% serum janin sapi (FBS) dan 1% penisilin (10000 IU / ml) - streptomisin (10000 g / ml?). Sel diinkubasi selama 24 jam di bawah 5% CO2, 95% O2 pada 37 ° C
      Hasil Penelitian
Untuk mengevaluasi peracunan terhadap payudara manusia
taksol
diisolasi dalam medium kultur MID . Uji kandungan taksol dg analisa  kromatografi dan spektroskopi . Kuantitas taksol dihasilkan oleh jamur dihitung dan diperkirakan 245 mg / l. Taxol jamur diuji untuk bioaktivitas terhadap sel kanker garis manusia (MCF-7) dan hasilnya menunjukkan bahwa, taksol yang memiliki aktivitas antikanker .

3. Ginggolida
Merupakan golongan diterpenoid yang terdapat dalam tanaman ginkgo biloba. Ginkgolida dapat menurunkan agregasi platelet, reaksi alergi, dan inflamas. Gangguan fungsi otak pada manula sering kali muncul akibat proses oksidasi yang menimbulkan kerusakan. Ginkgo dapat mencegah oksidasi karena sifatnya sebagai antioksidan. Meski ginkgo efektif bagi peningkatan sirkulasi darah pada manula, sebenarnya ginkgo dapat pula memperbaiki fungsi mental pada orang-orang yang lebih muda. Fungsi mental yang dimaksud di sini khususnya menyangkut aspek memori dan keterjagaan (alertness). Senyawa aktif : diterpenes (termasuk senyawa terpene yang disebut ginkgolides)
Fungsi: Ginkgo dianggap sebagai ramuan yang hebat karena memiliki banyak manfaat dalam aplikasi pengobatan. Kemampuan Ginkgo untuk meningkatkan oksigen ke jaringan hidup dengan meningkatkan aliran darah membuat Ginkgo penting untuk sejumlah gangguan termasuk masalah jantung, stroke, dan kepikunan geriatri. Secara tradisional, orang Cina telah menggunakan ginkgo untuk mengobati bronkial, asma dan paru. Baru-baru ini, penelitian telah menunjukkan bahwa senyawa tertentu yang terkandung dalam ginkgo telah terbukti efektif melebarkan arteri, vena dan kapiler, yang mengakibatkan peningkatan aliran darah perifer. Hal ini bermanfaat terhadap sirkulasi darah ke otak. Karena efektif meningkatkan aliran darah otak, ginkgo mungkin memiliki potensi penting untuk mengobati kepikunan, kehilangan memori jangka pendek, tinitus (dering di telinga) dan jenis-jenis penyakit pembuluh darah lainnya. Ginkgo telah digunakan untuk penyakit Raynaud, klaudikasio tenda berhenti sebentar, mati rasa, vertigo dan impotensi. Selain itu juga, Ginkgo dapat berfungsi sebagai antioksidan yang sangat baik, karena kandungan bioflavonoid nya. Ginkgo juga berpartisipasi dalam regulasi enzim dan melindungi pembuluh darah terhadap plak dan kerusakan hati
Description: D:\data kuliah\semester 5\Biokimia bahan alam\ginkgo.jpg
Ginkgo biloba L.
(Khomsan, 2003)

Diterpenoid Asiklik
1.      Fitol dan Fitadiena
Meskipun geranil-geraniol merupakan komponen yang jarang ada dalam tumbuhan dan hewan, dan belum ditemukan dari sumber lautan, senyawa analog yang lebih jenuh yaitu trans – fitol yang merupakan komponen yang terdapat dalam tumbuhan lautan dan daratan, fitol secara umum muncul dalam bentuk ester dari rantai samping asam propionat dalam klorofil a dan b dan biasanya hanya diisolasi dari pigmen tersebut,setelah penyabunan. Sintesis dari 4 prazat yang optis aktif, telah membuktikan konfigurasi 7R, 11R dari bahan alami.
Dalam alam fitol yang diproduksi oleh tumbuhan jelas dipindahkan sepanjang jaring-jaring makanan kepada hewan herbivora. Dalam lautan,proses ini harus dimulai dari tumbughan uniseluler, yaitu fitoflankton dan peredatornya invertebrata mikrosporik atau zooplankton, Meskipun fitol belum pernah dilaporkan merupakan komponen dari zooplangton, sejumlah hidrokarbon yang saling erat hubungannya, telah melakukan isolasi dari Gulf of maine suatu koleksi campuran dari zooplangton, sejumlah hidrokarbon yang saling dekat hubungannya, yaitu fitadiena Olefin-olefin ini telah diisolasi dengan cara kromatografi gas preparatif dan dikarakterisasi dengan kombinasi analisis spektral dan modifikasi kimiawi,ditunjang dengan asal-usul dari dieana tersebut dalam fitol yang diproduksi oleh tumbuhan, pencampuran yang terakhir ini dengan asam oksalat dalam kondisi dehidrasi lunak akan menghasilkan suatu campuran dari fitadiena yang serupa komposisinya dengan yang teramati di alam.
Manfaat Fitol, menurut Jhon T Mackie, periset Departemen Patobiologi, Texas University, Amerika Serikat, dalam organ hati, fitol dimetabolisme menjadi asam fitanat dan pristanat. Asam organic itu merupakan senyawa pengikat peroxisome proliferator activated receptor gamma (PPARy) yang menghambat ekspresi gen penyebab oksidasi asal lemak pada peroksisome dan mitokondria yang akhirnya menjadi sel kanker. Sehingga pemanfaatan fitol dalam diterpenoid ini dapat digunakan sebagai anti kanker.
2.      Krinitol
Meskipun geranilgeraniol belum diisolasi dari sumber lautan, 9-hidroksi-geranilgeraniol (krinitol) telah berhasil diisolasi dari gulma laut coklat Mediteranea Cystoseira crinita(Phaeophyta),Struktur dasar dari krinitol telah ditentukan dengan cara membandingkan produk reduksi natrium utamanya dalam amonia cair 2, 6, 10, 14-tetrametilheksadeka-2,6,10,14-tetraena dengan sampel asli.
Gugus hidroksi skundernya posinya ditentukan pada C-9 berdasarkan pada multiplkasi kopling dari protein dalam spektrum, fragmentasi spektra massa dari krinitol menunjukkan fragmentasi yang nyata yang mendukung posisi dari hidroksil skunder pada C-9, dalam studi yang sama suatu senyawaC14 terdegradasi, oksokrinol, yang asl-usul terpenanya jelas telah diisolasi.
3.      Isonitril Halichondria
Telah diketahui bahwa sifat karakteristik dari bunga karang tertentu adalah sintesis metabolit yang mempunyai gugus fungsional isonitril, Isonitril adalah komponen langka dalam organisme daratan dan telah diisolasi hanya dari jamur marga Penicillium dan Trichoderma alam bunga karang lautan paling sedikit ada lima marga yang telah diketahui menghasilkan senyawa Isonitril dan yang unik adalah semua metabolit tersebut adalah seskuiterpenoid,dalam diterpenoid dua senyawa telah dipelajari suatu senyawa asiklik atau suatu molekul tersiklik (Scheur, 1998).
Diterpen siklik
Geranil- geraniol telah dipostulatkan sebagai suatu precursor umum dari diterpen siklik pada tahun 1953. Telah dipertunjukan bahwa geranil-geraniol pirofosfat (1) telah berubah secara serentak menjadi kaurene
·         Xeniana, Xenisin, dan Diktiodial
Telah diketahui tetapi tidak sering terlihat hahwa metabolit dari kerangka terpenoid yang sama dapat diisolasi dari tumbuhan dan hewan. Contoh, yang baru adalah metabolit koral lunak xenisin dan senyawa yang ada hubungannya diktiodial yang telah dipisahkan dari gulma laut Dicryora.
·         Dilofol
MDescription: http://dc131.4shared.com/doc/eSNIwP0i/preview_html_m1388e2fc.pngetabolit dari marga ganggang coklat yang ada hubungan biologisnya, Dictyota, Pachydicryon, dan Dotiphns dibicarakan dalam berbagai bagian dari bab ini; penggolongan mereka dibuat terpisah berdasarkan perbedaan sistem cincin mereka. Metabolit- metabolit ini herhubungan erat dan dalam banyak hal, mereka dapat segera dirasionalisasikan (Scheur, 1998)
















BAB III
PENUTUP
3.1 Kesimpulan
1. Senyawa diterpenoid adalah senyawa C20 yang bila diamati secara seksama,dapat terlihat bahwa tersususn dari empat unit isoperana C5 (2-metil-1,3-butadiena) yang terikat satu sama lain dalam pola kepala-ekor secara simetris. Senyawa ini mempunyai bioaktifitas yang cukup luas yaitu sebagai hormon pertumbuhan tanaman, podolakton inhibitor pertumbuhan tanaman, antifeedant serangga, inhibitor tumor, senyawa pemanis, anti fouling dan anti karsinogen. Senyawa diterpenoid dapat berbentuk asiklik, bisiklik, trisiklik dan tetrasiklik.
2. Secara umum biosintesa dari terpenoid terjadi 3 reaksi dasar yaitu:
a)      Pembentukan isoprene aktif berasal dari asam asetat melalui asam mevalonat.
b)      Penggabungan kepala dan ekor dua unit isoprene akan membentuk mono-, seskui-, di-. sester-, dan poli-terpenoid.
c)      Penggabungan ekor dan ekor dari unit C-15 atau C-20 menghasilkan triterpenoid dan steroid.
3. Contoh senyawa diterpenoid adalah : Xeniana, Xenisin,  Diktiodial, Dilofol, Krinitol, Fitolda, Fitadiena, dan Ginggolida.




DAFTAR PUSTAKA
Anonim, 1996, GINKGO BILOBA The Extraordinary Herb that Boosts Circulation and  Enhances Brain Funct ion, Woodland Publishing, Pleasant Grove, UT
Gunawan, I.W.G. I G. A. Gede Bawa, dan N. L. Sutrisnayanti. 2008. Isolasi Dan  Dentifikasi Senyawa Terpenoid Yang Aktif Antibakteri Pada Herba Meniran (Phyllanthus niruri Linn). Jurusan Kimia FMIPA Universitas Udayana, Bukit Jimbaran. ISSN 1907-9850

Khomsan, Ali, 2003, Substansi Antagonis PAF dalam Ginkgo Biloba, Wacana Ekonomi, Kompas, Jakarta (16 Desember 2003)
Pandi, Mohan. Rangarajulu Senthil Kumaran2*, Yong-Keun Choi2, Hyung Joo Kim2 and Johnpaul Muthumary. 2011. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morindacitrifolia. African Journal of Biotechnology Vol. 10(8), pp. 1428-1435,
Scheur, J. Paul., 1978, Produk Alami Lautan dari Segi Kimia dan Biologi Jilid 2, Academy Press NewYork San Fransisco: London.
Tim KBK Kimia Organik, 2011, Kimia Organik Bahan Alam, FMIPA Unimed: Medan
                                                                                           













Thursday, December 20, 2012

PATOGENESIS BAKTERI


Tropisme jaringan: bakteri tertentu memiliki preferensi terhadap jaringan tertentu
Spesifisitas spesies: bakteri patogen tertentu menginfeksi hanya spesies tertentu
Spesifisitas genetik dalam spesies: strains tertentu dalam suatu spesies secara genetik imun terhadap patogen

Postulat Koch
  • Mikroorganisme yang diduga patogen harus ada di semua kasus penyakit dan tidak ada di hewan yang sehat 
  • Mikroorganisme tersebut harus dapat diisolasi dari hewan yang sakit dan ditumbuhkan sebagai biakan murni 
  • Sel-sel dari biakan murni mikroorganisme tersebut harus dapat menyebabkan penyakit di hewan yang sehat 
  • Mikroorganisme tersebut harus dapat diisolasi kembali dan sama dengan mikroorganisme awal 

Beberapa spesifikasi perlekatan:
  • contoh: Streptococcus mutants banyak ditemukan dalam plak gigi tetapi tidak di permukaan epitel lidah. Sebaliknya S. salivarius banyak melekat di sel epitel lidah tetapi tidak di plak gigi 
  • contoh: Neisseria gonorrhoea menginfeksi manusia; E. coli K-88 menginfeksi babi 
  • contoh: babi (varietas) tertentu tidak mudah terinfeksi E. coli K-88 

Proses Infeksi:
Sering dimulai dari bagian membran mukosa yang tersusun atas satu atau beberapa lapisan sel-sel epitel dan berhubungan dengan lingkungan luar.  Membran ini ada di berbagai bagian tubuh seperti saluran urogenital, respirasi dan gastrointestinal. Membran mukosa sering diselubungi lapisan pelindung yang merupakan glikoprotein, disebut mucus. 

PERLEKATAN (ADHERENCE)
Tahap-tahap perlekatan
  •  Perlekatan nonspesifik/reversible
  •  Perlekatan spesifik/permanen
  • Biasanya perlekatan reversible mendahului perlekatan permanen tetapi pada beberapa kasus terjadi sebaliknya atau perlekatan spesifik tak akan pernah terjadi.
Perlekatan terjadi oleh 2 faktor: ligand & reseptor
  • Ligand bakteri (adhesin): makromolekul yang merupakan komponen dari permukaan sel bakteri yang berinteraksi dengan reseptor di sel inang. Adhesin dapat berupa: komponen dari kapsula, dinding sel, pili atau fimbriae 
  • Kapsula: lapisan yang berada di permukaan sel bakteri,berupa polisakarida (jarang berupa protein) dan merupakan matriks yang tersusun rapat
  • Pili dan fimbriae: struktur berfilamen tersusun atas protein, berada di permukaan sel bakteri.
    Perbedaan pili dan fimbriae belum ada konsensus. Beberapa pendapat:
  • Fimbriae dikode gen-gen yang terletak di kromosom, pili dikode oleh gen-gen di plasmid. Fimbriae lebih pendek, jumlahnya banyak di tiap sel, fungsi untuk perlekatan
  • Pili lebih panjang, jumlah 1 atau beberapa di tiap sel, ada yang berfungsi untuk perlekatan, ada yang berfungsi untuk transfer gen (konjugasi)
Reseptor: makromolekul di permukaan sel eukaryotik sebagai tempat mengikat  ligand/adhesin spesifik (komplemen ligand). Reseptor biasanya berupa residu karbohidrat atau peptida.

ADESHIN
Adhesin yang umum pada E. coli: fimbriae. Galur (strain) tunggal E. coli dapat mengekspresikan lebih dari satu tipe fimbriae yang dikode oleh bagian-bagian yang berbeda dari kromosom  Keragaman genetik ini memungkinkan organisme beradaptasi terhadap perubahan lingkungan dan memperluas kesempatan untuk tumbuh di permukaan yang berbeda-beda dari inangnya. Banyak tipe fimbriae adhesif E. coli kemungkinan merupakan perkembangan dari fimbriae asal yang mirip dengan fimbriae tipe 1 dan tipe 4. Fimbriae tipe 1 pada E. coli memungkinkannya dapat mengikat D-manosa di permukaan sel eukaryotik. Sisi pengikatan pada fimbriae terletak di protein minor (28-31 kDa)  di ujung atau menyisip sepanjang fimbriae.

Dengan keanekaragaman genetik protein adhesin ini, bakteri dapat melekat ke berbagai reseptor. Pseudomonas, Vibrio dan Neisseria memiliki pili tipe IV yang mengandung subunit protein dengan asam amino (sering fenilalanin) termetilasi, di atau dekat ujung amino. Pili N-metilfenilalanin merupakan penentu virulensi dalam patogenesis infeksi paru oleh Pseudomonas aeruginosa pada penderita cystic fibrosis.

Beberapa spesifikasi perlekatan:
  • Tropisme jaringan: bakteri tertentu memiliki preferensi terhadap jaringan tertentu. contoh: Streptococcus mutants banyak ditemukan dalam plak gigi tetapi tidak di permukaan epitel lidah. Sebaliknya S. salivarius banyak melekat di sel epitel lidah tetapi tidak di plak gigi
  • Spesifisitas spesies: bakteri patogen tertentu menginfeksi hanya spesies tertentu. contoh: Neisseria gonorrhoea menginfeksi manusia; E. coli K-88 menginfeksi babi
  • Spesifisitas genetik dalam spesies: strains tertentu dalam suatu spesies secara genetik imun terhadap patogen. contoh: babi (varietas) tertentu tidak mudah terinfeksi E. coli K-88
INVASI
  •  beberapa bakteri patogen bertempat tinggal di permukaan epitel
  •  beberapa spesies dapat menembus barrier sel epitel tetapi tetap di tempat kedatangannya
  •  beberapa yang lain mengikuti aliran darah dan masuk sistem lain 
Contoh:
Shigella melakukan penetrasi dengan cara mengaktifkan sel-sel epitel usus menjadi bersifat endositik. Shigella biasanya tidak menyebar melalui aliran darah
Salmonella typhi menembus sel epitel masuk aliran darah
Jika pertumbuhan bakteri menyebar luas, sebagian akan masuk ke aliran darah dalam jumlah besar, kondisi ini disebut bakteremia

VIRULENSI: INVASIVENESS DAN TOKSISITAS
  • Virulensi: kemampuan relatif patogen menyebabkan  penyakit/kerusakan pada inang, ditentukan oleh adanya invasiveness dan toksisitas
  • Invasiveness: kemampuan patogen tumbuh dalam jaringan inang dalam jumlah banyak dan menghambat fungsi inang  (memiliki kemampuan melawan pertahanan tubuh inang)
  • Toksisitas: kemampuan patogen menyebabkan penyakit dengan menghasilkan toksin yang menghambat fungsi  inang atau membunuh inang
Invasiveness
  • Invasi patogen ke inang didukung oleh adanya produksi substansi ekstraseluler yang disebut invasin
  • Invasin pada umumnya berupa protein (enzim) yang bersifat menyerang sel inang secara lokal dan atau memacu pertumbuhan dan penyebaran patogen
  • Invasin mirip eksotoksin tetapi eksotoksin lebih mematikan dan spesifik
Invasin
Spreading factor
Merupakan enzim bakteri yang mempengaruhi secara fisik matriks jaringan dan ruang antar sel, membantu penyebaran patogen

Hialuronidase: dihasilkan oleh streptococci, staphylocci dan clostridia. Enzim ini menyerang interstitial cement dari jaringan konektif dengan depolimerisasi asam hialuronat.
Kolagenase: dihasilkan oleh Clostridium histolyticum dan Clostridium perfringens. Merusak kolagen penyusun otot

Neurominidase: dihasilkan oleh patogen usus seperti Vibrio cholerae dan Shigella dysentriae. Enzim ini mendegradasi asam neuraminik (= asam sialik) yang merupakan intercellular cement dari sel epitel mukosa intestinal

Streptokinase yang dihasilkan oleh streptococci dan staphylokinase yang dihasilkan oleh staphylococci. Kinase mengubah plasminogen yang bersifat inaktif menjadi plasmin yang merusak fibrin di darah dan mencegah pembekuan darah sehingga bakteri lebih mudah berdifusi






Wednesday, November 28, 2012

Parenkim


Merupakan sebuah jaringan yg tdr dr sel-sel hidup, sgt bervariasi scr morfologi maupun fisiologi dan biasanya mmlk btk polihedral, mmlk protoplas hidup. Sel-sel parenkim dpt dijumpai sebagai kelompok sel sejenis pendukung jaringan maupun berasosiasi dg jenis sel lainnya. Jaringan parenkim penyusun organ primer tumbuhan (mesofil daun, kortek dan empulur, bagian-bagian bunga) berdiferensiasi dr meristem dasar. Sel parenkim yg tergabung jar pengangkut primer dan sekunder dibentuk dari prokambium dan vaskular kambium. Parenkim jg dpt berkembang dr felogen dg mbtk feloderm, dmn jumlahnya meningkat dg adanya pertumbuhan sekunder

Isi sel parenkim merefleksikan aktifitas selnya. Pada jaringan yg aktif melakukan fotsin biasanya ditandai dg djumpainya byk kloroplas (=klorenkim). Ciri sel yg aktif berfungsi dlm proses fotosintesis adl memiliki banyak vakuola dan jaringannya mmlk ruang antar sel yg besar. Sedangkan sel parenkim sekretori biasanya memiliki protoplas padat. Sel parenkim dpt pula mengakumulasi berbagai jenis senyawa kimia. Pd biji, sel-sel parenkim penyimpan penyusun endosperm dicirikan dg adanya protein ataupun badan-badan minyak. Sel-sel parenkim penyimpan tepung dijumpai pd tuber kentang . Sel parenkim dpt pula terspesialisasi sbg jar penyimpan air, misalnya pd tumbuhan sukulen yi Agave, Aloe, Sansevieria, Peperomia. Sel-sel tsb biasanya berukuran besar, berdinding tipis, tssn dlm btk barisan, memanjang spt sel palisade, sitoplasmanya padat dg vakuola yg besar mengandung air ataupun substansi berlendir. Unt organ-organ penyimpan yg berada di dlm tnh, biasanya selnya tdk mengandung air, tp mengandung tepung, dpt pula kombinasi diantara keduanya. Dd sel parenkim dpt tebal maupun tipis. Bbrp sel parenkim dpt berdinding tbl maupun tipis.

Tuesday, November 6, 2012

Epidermis dan derivatnya

Merupakan lapisan sel terluar yang menyelubungi seluruh bagian tubuh tumbuhan primer, meliputi akar, batang, daun, bunga, buah, dan biji. Sel-sel inisial epidermis sebagian dpt berkembang mjd alat-alat tambahan lain sering dsbt derivat epidermis spt stoma, trikoma, sel kipas, sistolit, sel silika, dan sel gabus

Karakteristik sel epidermis
Memiliki bentuk yang bervariasi tetapi biasanya berbentuk tabular, dengan kedalaman (tinggi) yang rendah, kecuali pada beberapa lapisan biji yang sel epidermisnya mirip dengan sel palisade karena ketinggiannya lebih besar drpd lebarnya. Memiliki protoplast yang hidup, dan dapat menyimpan beberapa produk metabolisme. Memiliki plastida yg hy mengembangkan sedikit grana shg biasanya kekurangan klorofil. Epidermis tumbuhan yg hidup dlm naungan dan unt bbrp tumbhn yg hdp dlm air biasanya memiliki kloroplas yg aktif berfotsin. Kristal protein dan tepung dapat ditemukan dlm plastida pd epidermis. 

Sedangkan antosianin dijumpai dlm vakuola. Biasanya tersusun dari satu lapisan sel rapat tanpa ruang antar sel. Shg dikenal adanya istilah teichode unt merujuk pd ektodesmata dan saluran kecil tsb. Berfungsi dlm penyerapan daun dan ekskresi,bertujuan unt membatasi pergerakan air, tmsk aliran transpirasi dan solut
-Plasma sel melekat pada dinding sel sebagai selaput dengan sebuah vakuola besar di pusat yang berisi cairan sel
1.Amfistomatik
2.Hipostomatik
3.Epistomatik

Monokotil :
Sel penutup bentuk halter, ramping di tengah dan menggelembung
diujungnya
Inti memanjang di sepanjang sel penutup
Sel penutup bentuk halter, ramping di tengah dan menggelembung
diujungnya Inti memanjang di sepanjang sel penutup

Gymnospermae dan dikotil
Sel penutup bentuk ginjal

Gymnospermae dan dikotil
Sel penutup bentuk ginjal
Sel penutup bentuk ginjal

•Tipe anisositik/Cruciferae
bilamana sel penutup dikelilingi oleh 3 sel tetangga yg tdk sama besar
pada Cruciferae dan Solanaceae
bilamana sel penutup dikelilingi oleh 3 sel tetangga yg tdk sama besar
pada Cruciferae dan Solanaceae

•Tipe aktinositik
stomata dikelilingi oleh sel tetangga yg tersusun radier
stomata dikelilingi oleh sel tetangga yg tersusun radier
Sel epidermis memiliki ketebalan yg bervariasi. Bagian dinding luar periklinal biasanya lbh tebal dibanding bag dinding periklinal dlm dan antiklinalnya. Epidermis dg dinding yg sgt tebal dijumpai pd Conifer, dinding tsb mengalami lignifikasi dan hampir memenuhi lumennya. Noktah berhalaman primer dan plasmodesmata biasanya dijumpai pd dd antiklinal dan periklinal dlm dr sel epidermis. Dulunya plasmodesmata diperkirakan berada pd dd terluar epidermis dan dsbt sbg ektodesmata

Penelitian-penelitian terakhir menyebutkan bhw yg berada di permukaan luar dd epidermis bukanlah untaian sitoplasma akan tetapi mrpk berkas ruang interfibriler dlm dd selulosa yg terbentang dr plasma membran mnj

kutikula
Saluran kecil tsb (microchannel) pd tumb Xerofit biasanya mengandung pektin. Di lapisan terluar epidermis terkadang dijumpai adanya lapisan kutikula. Tersusun atas 2 lipid:
  1. Kutin (tdk dpt larut) mrpk matrik dr kutikula
  2. Lilin (wax), dpt larut, dideposisikan pd permukaan kutikula (epicuticular wax) maupun di bag dlm matrik (kutikula atau intracuticular wax
Kutikula mrpk karakteristik dr seluruh permukaan tumbuhan yg berhadapan dg udara luar. Pd kondisi tertentu dijumpai adanya kutikula pd sel-sel kortek, yg berfungsi sbg jaringan pelindung dsbt cuticular epitelium. Proses terbentuknya cuticular proper (kutin) dsbt cuticularization, yg dipermukaannya dijumpai adanya lilin (cuticular wax) tnp selulosa . Cuticular layer dijumpai dibawah kutin dan merupakan lapisan terluar dinding sel yang mengeras dg adanya kutin dg bbg tingkatan kekerasan. Proses terbentuknya cuticular layer dsbt cutinization. Pd bbrp spesies, inisial kutikula dsbt prokutikula (amorf). Kemudian penampakan ultrastrukturnya berubah mjd kutin yg khusus unt stp spesies. Kemunculan kutin diikuti dg tbtknya lapisan kutikula, makin lama makin menebal shg ketebalannya melebihi sel inisialnya. Kutin dan wax disintesis di sel epidermis dan harus bermigrasi ke permukaan dinding sel. Beberapa peneliti berpendapat bhw teichode berfungsi sbg jalur lewatnya kutin dan wax melewati dinding. Prekusor epicuticular wax diproduksi di RE dan di modifikasi di apparatus golgi sblm dilepaskan dr sitoplasma mll eksositosis

Stomata
Merupakan lubang/celah pd epidermis organ tumbuhan yg berwarna hijau yg dibatasi oleh sel khusus dsbt sel penutup. Sel penutup dibatasi oleh sel-sel yg btknya sama atau berbeda dg sel epidermis lainnya dan dsbt sel tetangga. Sel tetangga berperan dlm perubahan osmotik yg menyebabkan gerakan sel penutup yg mengatur lebar celah. Stomata dpt dijumpai pd bagi organ primer tanaman yg berada diatas permukaan tanah, terutama pd bag daun

Perkecualian
  1. Tdk djumpai pd bag yg berada di ats perm tnh dr bbrp tnmn daratan yg tdk mmlk klorofil: Monotropa, Neotia 
  2. Daun dr holoparasit famili Balanophoraceae : sgt kekurangan stomata
  3. Stomata dpt ditemukan pd akar seedling Helianthus annuus, Pisum arvense, Ornithopus sativus, Pisum sativum, Ceratonia siliqua
  4. Densitas stomata sgt bervariasi pd daun yg aktif melakukan fotsin, baik pd daun yg sama maupun pd daun berbeda namun msh dlm satu tanaman
  5. Variasi tsb sgt dipengaruhi oleh faktor lingkungan, seperti cahaya dan kadar CO2
Daun dibedakan mjd 3 bdsrkn ltk stomatanya:
Berdasarkan letak sel penutup thd epidermis, dikenal 3 tipe stomata
Panerofor, Bila sel penutup terletak sama tingginya dg epidermis
Kriptofor, Bila sel penutup lebih rendah dr sel epidermis. 
Bila dilihat dari atas, sel penutup pd dikotil berbentuk ginjal, sedangkan pd Poaceae berbentuk halter
Distribusi stoma
Pada semua bagian tanaman di atas tanah, tidak ada di akar. Pada tanaman dikotil -> tersebar ; monokotil -> tersusun paralel. Pada daun jumlahnya ribuan - ratusan ribu per cm2. Pada tanaman air -> ada di permukaan atas daun (pada epidermis atas)
Sifat stoma : tertutup --> tidak ada cahaya ; terbuka --> ada cahaya

Penggolongan stomata pd tumbuhan dikotil yg bdsrkn letak sel tetangga disamping sel penutup stomatanya
Tipe anomositik/Ranunculaceae
Bilamana sel penutup dikelilingi oleh sel tetangga yg bentuk dan ukurannya sama dengan sel yg ada disekelilingnya
Pd Ranunculaceae, Caparidaceae, Cucurbitaceae, Malvaceae

Tipe parasitik/Rubiaceae
Bilamana sel penutup diiringi oleh sebuah sel tetangga atau lebih dg sb panjang sel tetangga sejajar dg sb sel penutup
Pada Rubiaceae, Magnoliaceae, Mimosaceae

Tipe diasitik/Caryophyllaceae
Stoma dikelilingi 2 sel tetangga, dinding kedua sel tetangga tsb tegak lurus thd sb panjang sel penutup serta celah
Pd Caryophyllaceae dan Acanthaceae

Tipe siklositik
Stomata dikelilingi oleh satu atau dua susunan sel tetangga yg tersusun msg-msg oleh 4 sel atau lb, mbtk lingkaran dg jari-jari yg sempit

Trikoma
A growth of hairs. Dpt dijumpai di seluruh bag tumbhn, dpt bertahan di sepanjang kehidupan tumbuhan ataupun gugur
Fungsi trikoma (5)
Tumbuhan yg hdp di daerah kering, daunnya memiliki banyak trikoma unt mengurangi penguapan (meningkatkan refleksi sinar matahari shg dpt menurunkan suhu daun)
Pd bbrp tumbhn epifit (Ex: Bromelia), trikoma pd daunnya dgunakan unt menyerap air dan mineral
Atriplex (Saltbush), menggunakan trikomanya unt mensekresikan klbhn garam, mncgh akumulasi garam berlebih dlm tanaman
Pada perkembangan daun awal, trikoma yg mengandung polifenol bfgs unt melindungi thd dampak merusak sinar UV B
Pd bbrp sp tumbuhan, adanya trikoma yg rapat dpt dgunakan unt menghindari pemakanan oleh insekta, peletakan telur insekta, dan pengkonsumsian oleh larvaenya

Pengklasifikasian trikoma bdsrkn morfologinya
Papillae, pertumbuhan ke arah luar dr epidermis, kdg dibedakan dr trikoma
Simple trichomes (unbranched), uniseluler atau multiseluler
Root hairs

Sel silika dan sel gabus
Sel silika berasal dr tjdnya deposisi silika dlm jml besar pd sel penyusun bag shoot dr grass, ketika sel tsb tlah bnr2 berkembang mk lumennya akn penuh terisi dg silika. Sel gabus ddnya mengalami suberisasi dan kadang mengandung bhn organik padat

Perkembangan sel silika dan sel gabus
Pasangan sel silika-gabus berasal dr pembelahan simetris atau equal sel inisial di bag basal meristem daun dan internodus, shg tbtk sel anakan yg simetris pula. Sel sebelah atas mrpk calon sel silika sdgkn sel sebelah bawah mrpk cln sel gabus. Sel silika biasanya membesar lbh cepat drpd sel gabus dan tumbuh menonjol dr permukaan epidermis dan menuju sel gabus. Sel silika yg mendekati dewasa, nukleusnya akn pecah dan lumen selnya terisi dg bhn-bhn fibrillar dan mengandung droplet lipid, ke-2 bhn tsb kemungkinan mrpk sisa protoplas. Akhirnya pd sel silika yg menua lumennya terisi dg silika, yg berpolimerisasi mbtk badan silika. Sdgkn sel gabus tetap memiliki nukleus dan sitoplasma saat dewasa

Sel bulliform (Sel Kipas)
Sel yg btknya spt gelembung dijumpai pd semua monokotil, kecuali Helobiae. Dpt dijumpai di kedua sisi daun, tdk terbatas pd epidermis sj tp seringkali ditemukan pd sel yg kurang berwarna bdktn dg mesofil. Kadang dijumpai di seluruh permukaan atas bag helaian, kadang terbatas diantara tulang daun dan membentuk semacam berkas, bag tengah selnya biasanya lbh besar. Fungsinya untuk mengurangi panas. Selnya mengandung air dan tak berwarna. Dinding luarnya lbh tebal drpd sel-sel epidermis yg berada di dktnya, mengalami kutinisasi dan mpy kutikula. Expansion cell, pd bbrp tahap perkembangan daun, sel-sel tsb mengalami ekspansi yg cepat shg diperkirakan berperan thd pembentagan daun. Motor cell, dg adanya perubahan turgor, sel-sel tsb berperan dlm pembukaan higroskopik dan pergerakan menutup dr daun dewasa

PERTUMBUHAN SEKUNDER BATANG



The Birth New Meristem
Pertumbuhan primer merupakan aktivitas meristem ujung akar dan batang.
Menyebabkan pertumbuhan memanjang kearah atas (SAM) dan ke bawah (RAM)
Pertumbuhan sekunder dipicu oleh meristem selain diujung batang dan akar.
Meristem baru ini terbentuk dari sisa jaringan provascular.
Menyebabkan pertumbuhan ke arah lateral.
Disebut juga sebagai meristem lateral.

Kambium
Meristem lateral di batang adalah kambium.
Umum dijumpai pada tanaman berkayu maupun arborescent (Conifer).
Terbentuk pertama kali dibagian jaringan  pengangkut antara xilem dan floem.
Disebut juga dengan kambium fasikuler
Diferensiasi kambium berlanjut pada daerah diantara berkas pengangkut (interfasikuler region) sehingga dsb kambium interfaskuler.

KAMBIUM VASKULER
Pada tanaman herba dikotil yang hanya dijumpai sedikit pertumbuhan sekunder, Kambium fasikuler merupakan satu-satunya daerah yang aktif.
Pada tanaman herba tidak berkayu tidak dijumpai kambium. Kalaupun ada tidak aktif membelah.
Aktivitas kambium berlangsung terus-menerus pada tanaman perenial
Pada tanaman annual aktivitasnya hanya sementara. Sebelum tanaman mati, kambium menghentikan aktivitasnya dan berdeferensiasi menjadi xylem dan floem.

PERIDERM
Merupakan pembungkus batang tanaman dikotil dan angiosperm.
Terdiri dari felem dan feloderm yang terbentuk dari felogen.
Felogen merupakan meristem sekunder .
Diinisi oleh parenkim kortek terluar, umumnya satu atau dua lapis di bawah epidermis.

FELEM
Felogen ke arah luar membentuk felem.
Felem merupakan sel yang tersusun rapat dengan bentuk seperti sel induknya (felogen).
Sel dewasa merupakan sel mati dan dinding sekunder mengandung suberin yang tinggi.
Impermiabel terhadap air.
Sehingga sel diluarnya akan mati.

FELODERM
Felogen ke arah dalam membentuk feloderm.
Merupakan sel hidup, seperti sel-sel parenkim kortek.
Pada awal perkembangannya, sel-sel tersebut sebagai tempat fotosintesis, memiliki kloroplas dan butir-butir pati.

Lentisel
Periderm yang mengalami spesialisasi untuk pertukaran gas.
Lentisel merupakan daerah yang terbentuk oleh sel-sel yang tersusun longgar yang merupakan turunan dari felogen. 

Produksi Industrial Asam Amino


Produksi asam amino adalah perusahaan multi-miliar dolar. Kesemuanya dua puluh asam amino diproduksi, meskipun dalam jumlah yang sangat berbeda.

Asam amino digunakan sebagai aditif pakan hewananimal feed additives” (lisin, metionin, treonin), penguat rasa “flavor enhancers” (monosodium glutamat, serin, asam aspartat) dan sebagai nutrisi khusus di bidang medis.
Asam glutamat, lisin dan metionin adalah asam amino yang paling banyak dijual. Asam glutamat dan lisin dibuat melalui fermentasi; metionin dibuat oleh sintesis kimiaProdusen utama asam amino adalah Jepang, AS, Korea Selatan, Cina dan Eropa.
Industri asam amino berakar pada praktek persiapan makanan di Jepang. Rumput laut telah digunakan selama berabad-abad di sana dan di negara-negara Asia lainnya sebagai bahan penyedap.

In1908, Kikunae Ikeda dari Tokyo Imperial University mengisolasi prinsip penguat rasa dari kombu rumput laut (Laminaria japonica) sebagai kristal monosodium glutamat (MSG).

Menambahkan MSG untuk daging, sayuran dan hampir semua jenis lain dari makanan jadi membuatnya gurih, sifat ini disebut umami.